Register to enable "Calculate" button.
Units:
cm=centimeter, ft=foot, g=gram, gal=U.S. gallon, kg=kilogram, km=kilometer, lb=pound, m=meter, min=minute, N=Newton, Pa=Pascal, psi=lb/inch2, s=second
Diagram of Venturi Flow Meter
Topics: Introduction Equations
Discharge Coefficients Error
Messages References
Introduction to Venturi Flow Meters
The classical Venturi tube (also known as the Herschel Venturi tube) is used to determine
flowrate through a pipe. Differential pressure is the pressure difference between
the pressure measured at D and at d. Other devices typically used to determine
flowrate are orifices and nozzles, but
the venturi tube has less head loss than either of these other methods due to its
streamlined design. For exact geometry and specifications for venturi tubes, see ISO (1991) or ASME (1971). Venturis
with cast iron entrance cones (the converging portion) are typically used in 4 to 32 inch
(10 to 80 cm) diameter pipes. Venturis with machined convergences are typically used
in pipes having diameter less than 10 inches (25 cm) while venturis with a welded sheet
metal convergence are used for larger pipes, typically up to 48 inch (1.2 m) diameter
(ASME, 1971). The ASME (American Society of Mechanical Engineers) and ISO
(International Organization of Standards) have been working on guidelines for Venturi
tubes since the early 1900s. The organizations have the most confidence in Venturi
tube accuracy when the Reynolds number is in the range of 105 to 106
as discussed below.
Equations
Top of Page
The calculations on this page are for a Classical Venturi Tube carrying a liquid as
described in ISO (1991) and in ASME (1971).
The ISO reference has a more complete discussion of venturi tubes than the ASME reference,
so the ISO equations are used in our calculations.
Discharge Coefficients for Venturi
Top of Page
The following graph shows how C varies with Re:
The graph is formed from the following data provided in ISO (1991)*:
Cast Iron Convergent (also known as "As Cast" or
"Rough Cast") |
ReD |
4x104 |
6x104 |
1x105 |
1.5x105 |
|
2x105 to 1x106 |
C |
0.957 |
0.966 |
0.976 |
0.982 |
|
0.995 [1] |
|
Machined Convergent |
Red |
5x104 |
1x105 |
2x105 |
3x105 |
5x105 |
2x105 to 1x106 [2] |
C |
0.970 |
0.977 |
0.992 |
0.998 |
0.995 |
0.995 |
|
Welded Sheet Metal (or Welded Sheet Iron) Convergent |
ReD |
4x104 |
6x104 |
1x105 |
|
|
2x105 to 2x106 |
C |
0.96 |
0.97 |
0.98 |
|
|
0.985 [3] |
Notes in above table:
* ISO 5167-1 states that only the last column of C values is part of the standard; the
other values presented are from a smaller number of experiments and, in most cases, the
venturi tubes had geometries which were not strictly in accordance with the ISO standard.
No limits on D or d/D are indicated for any C's except for the last column.
[1]: Valid for 5 cm ≤ D ≤ 25 cm and 0.4 ≤ d/D ≤ 0.75
[2]: ReD (not Red)=2x105 to 1x106 and 5 cm
≤ D ≤ 25 cm and 0.4 ≤ d/D ≤ 0.75
[3]: Valid for 20 cm ≤ D ≤ 1.2 m and 0.4 ≤ d/D ≤ 0.7
LMNO Engineering fit curves through the data points to arrive at the above graph.
The fitted curves are used in the calculations and have the form:
C = a + b log(Re) + c [log (Re)]2 + d [log(Re)]3 + ...
where a, b, c, d, ... are constants. The number of constants was set equal to the
number of data points plus 1.
Error Messages
Top of Page
"All inputs must be positive". This is an initial check
of user input. No computations.
"d/D must be < 1". This is an input check if both d and D are
entered. No computations.
"D or d/D out of range", "D out of range", or
"d/D out of range". Results are computed and printed, but D or d/D
are out of the valid range where tests were conducted to determine C values.
Computations are completed since C does not depend directly on D or d/D; C is only a
function of Red or ReD.
"ReD out of range", "ReD will be too high",
"ReD will be too low", "Red and ReD out of
range", or "Red , ReD will be out of range".
C is not computed and neither is the desired quantity. However, some quantities are
computed if they don't require C (e.g. pipe area from D). Accurate values for C have
been determined by ISO and ASME only within the published ranges of Red or ReD,
depending on the type of venturi. Red is Reynolds number based on d
(throat diameter) and ReD is Reynolds number based on D (pipe diameter).
Try the simpler venturi calculation on our Bernoulli page if your parameters are out of range. It
is not as accurate, but won't give "parameter out of range" error messages.
References
Top of Page
International Organization of Standards (ISO 5167-1). 1991. Measurement of
fluid flow by means of pressure differential devices, Part 1: Orifice plates, nozzles, and
Venturi tubes inserted in circular cross-section conduits running full. Reference
number: ISO 5167-1:1991(E).
American Society of Mechanical Engineers (ASME). 1971. Fluid meters: Their
theory and application. edited by H. S. Bean. 6ed. Report of ASME
Research Committee on Fluid Meters.
© 1999-2024 LMNO Engineering, Research, and
Software, Ltd. All rights reserved.
Please contact us for consulting or questions about venturi flow meters.
LMNO Engineering, Research, and Software, Ltd.
7860 Angel Ridge Rd. Athens, Ohio 45701 USA Phone: (740) 707-2614
LMNO@LMNOeng.com https://www.LMNOeng.com
|
To:
LMNO Engineering home page (more calculations)
Nozzle for liquids
Orifice for liquids (D<5cm)
Orifice for liquids (D>5cm)
Orifice for gases (D<5 cm)
Orifice for gases (D>5cm)
Simpler venturi calculation (not as accurate but won't give "parameter out of
range" messages): Bernoulli
Pressure Relief Valve
Unit Conversions
Register
|